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In 2002, Peterson, et. al. proposed using redundant signal measurements to provide the 
necessary confidence that the cycles are identified correctly.  The proposal used a 
weighted sum squared error (WSSE) statistic as a metric to determine if the correct cycle 
on every signal used has been selected with adequate probability.  The method increases 
availability by using redundant information to provide a better estimate of cycle 
confidence. 
 
Estimating the probability of undetected incorrect cycle selection is necessary to ensure 
that the system provides the integrity necessary for its intended aviation applications.  
However, it was not shown that the method itself had integrity in that it would calculate a 
conservative estimate of the probability given unknown biases.  This is necessary for the 
implementation of the algorithm in an avionics receiver. 
 
This paper examines, assesses, and refines the use of the WSSE statistic for Loran cycle 
selection.  It examines two weightings for generating WSSE for use in the aviation cycle 
selection algorithm.  It outlines how to implement the algorithm so that integrity may be 
proven.  Availability coverage results from each implementation will be shown and a 
discussion of implementation will be made. 

1.0 Introduction 
 
Long Rang Navigation, or Loran, is one of the few position, navigation and timing (PNT) 
systems capable of providing back up to the Global Positioning System (GPS) in multiple 
modes of operation.  The capability is critical as redundancy for GPS is vital to the 
national infrastructure.  The Volpe GPS vulnerability study indicated that the current 
GPS is susceptible to deliberate or inadvertent interference [1].  As such, it recommended 
examining various alternatives to providing redundancy to GPS, particularly in safety 
critical applications.  The 2004 FAA Loran Technical Evaluation examined the capability 
of Loran for providing GPS redundancy [2].  It offered several recommendations and 
changes, that if followed, would yield a Loran system that is capable of meeting 
requirements for non precision approach (NPA) for aviation, harbor entrance approach 
(HEA) for maritime, and highly synchronized timing and Stratum 1 frequency for timing 
and frequency users.  The preferred NPA is Required Navigation Performance 0.3 (RNP 
0.3). 
 

1.1 Loran as Aviation Back Up to GPS 
 



Aviation is an area where redundancy to GPS is highly desirable.  GPS is becoming a 
major part of the aviation navigation infrastructure for all phases of flight operations from 
take off, enroute, terminal area and approach and landing.  Additionally, GPS may serve 
as part of the surveillance infrastructure by providing the navigation input to Automatic 
Dependent Surveillance – Broadcast (ADS-B).  ADS-B is a system by which navigation 
and other information on ones aircraft through is shared with other aircraft and ground 
surveillance via a one hertz transponder broadcast.   Loran, with area navigation (RNAV) 
capability, conterminous United States (CONUS) coverage, and ¼ nautical mile or better 
accuracy has many of the qualities necessary to serve as GPS back up for aviation.  
Particularly, the focus is for Loran to provide approach guidance by supporting RNP 0.3 
and ADS-B as well as en route capabilities by supporting RNP 1.0.  However, it must be 
shown that Loran can meet the strict requirements of an aviation navigation system. 
 

1.2 Integrity and Availability for Aviation 
 
To serve as an aviation navigation system, Loran must demonstrate integrity while 
achieving acceptable availability.  Integrity is the fidelity of the system – the reliability 
that the information provided is true and the ability to provide a timely warning should 
there be incorrect information.  In aviation jargon, this means minimizing the occurrence 
of hazardously misleading information (HMI) where the horizontal protection level 
(HPL), the bound on horizontal position error (HPE) generated by the receiver, is 
exceeded by the true HPE.  For RNP 0.3 and RNP 1.0, the requirement is that the 
probability of HMI is less than 10-7 per hour.  In Loran, HMI can result from unwittingly 
tracking the wrong cycle, inadequate error bounds, and unwarned anomalous events.  
Meeting the integrity requirement is the most challenging task in demonstrating the 
ability of Loran to serve either RNP procedure. 
 
Availability represents how often the system can be used for the desired application.  To 
use a system for a specified RNP procedure, HPL must not exceed the horizontal alert 
limit (HAL) of the procedure.  It is desired that availability be at least 99.9%.  The 
requirement must be met at every point in the coverage area and cannot represent a 
spatial average.   
 

Requirement Definition (Metric) Minimum Requirement 
Integrity HMI is when HPL > HPE Probability HMI ≤ 10-7/hour 
Availability HPL ≤ HAL 

No HPL means not available 
99.9% 

Continuity Given HPL ≤ HAL initially 
HPL must exist &  
HPL ≤ HAL for 150 seconds 

99.9% over 150 seconds (RNP 
0.3) 
99.9% over 1 hour (RNP 1.0) 

Table 1.  Primary Requirements for Aviation  

 



1.3 Cycle Selection, Availability and Integrity 
 
A key determinant of Loran RNP 0.3 and RNP 1.0 availability is the ability to conduct 
cycle selection with adequate confidence.  Cycle selection is the process of choosing the 
same cycle on the Loran pulse to track for all signals.  This ensures consistency between 
measurements.  The tracked cycle is typically the sixth zero crossing commonly termed 
the standard zero crossing (SZC).  An incorrect cycle selection can result in a range error 
of three kilometers or more and hence it is important that one has confidence in our cycle 
selection.  This paper uses the term cycle integrity or confidence algorithm to denote the 
method for determining the certainty of cycle selection.  Cycle confidence is necessary to 
ensure that the calculated HPL has integrity. 
 

 
Figure 1. Loran Pulse, Envelope, and Tracking Point 

 
Peterson et. al. developed a Loran cycle confidence algorithm based on the weighted sum 
squared error (WSSE) statistic in [3].  However, the demonstration of the integrity and 
implementation of algorithm remain open issues.  Demonstrating that the algorithm has 
integrity is clearly a necessary requirement.  It must be shown that the true probability of 
having an incorrect cycle is less than or equal to the estimate given by the algorithm.  
This establishes that the confidence given by the algorithm reflects the true confidence.  
However demonstrating integrity is not sufficient.  Even if algorithm has integrity, it is 
useless if in cannot be implemented in the receiver.  It may not be reasonable to 
implement some algorithms (e.g. due to complexity) even though they have integrity.  It 
is important to understand how the implementation affects availability and receiver 
complexity. 
 

1.4 Outline 
 
The paper will discuss the integrity, availability and receiver complexity aspect of 
implementing the WSSE based cycle integrity algorithm.  The first two sections provide 
background on the cycle selection and the WSSE cycle integrity algorithm proposed in 
[3].  A major determinant of algorithm performance and integrity is the weighting matrix 
used and two choices are discussed.  The body of the paper examines the integrity and 



performance of each choice.  An outline of the means of demonstrating integrity for both 
choices will be provided.  Finally the performance of the choices in regards to availability 
and receiver complexity will be discussed. 
 

2.0 Cycle Selection & Integrity 
 
This section presents a basic description of the cycle confidence algorithm.  For 
additional information, see [3][4]. 
 

2.1 Cycle Selection and Integrity Overview 
 
The cycle selection process in Loran typically involves examining the envelope of the 
signal and choosing the desired cycle based on the envelope slope or ratio.  The 
determination complicated by the presence of noise on the signal and group delay 
between the envelope and the carrier of the signal due to propagation.  The group delay 
results in an effect typically referred to as the envelope to cycle difference (ECD).  These 
measurement uncertainties can result in incorrectly cycle identification.  The integrity of 
the HPL requires high confidence that the correct cycles were selected.  The cycle 
confidence algorithm quantifies the fidelity of the cycle selection.  The algorithm 
estimates the probability of having a wrong cycle on any of signals used.  In this paper, 
we denote this probability as PWC.  For the cycle selection to be useable for the HPL 
calculation, a PWC of 7x10-8 or lower is required [5].  For the cycle confidence algorithm 
to have integrity, the estimate of this probability must be conservative.  This means that 
the estimate must be higher than the true probability of a wrong cycle.   
 
The cycle confidence algorithm, as assessed in the 2004 FAA Loran technical evaluation, 
is calculated confidence by two means, depending on station availability.  When only 
three stations are available, there is no redundant information.  In this case, cycle 
confidence is determined using the probability of being on the incorrect cycle (PIC) for 
each station.  PWC is one minus the probability of being on the correct cycle for all signals 
(see Table 2 for equation).   The method is also used if there are three strong stations with 
which we have high confidence (PIC > 10-8) available.  This is known as having a “trusted 
triad”.  The method is simple, yet there is no true attempt at detecting incorrect cycle 
selection using receiver measurements.   
 
If more than three stations are available, redundant information can be used.  The 
weighted sum squared error (WSSE) statistic provides the means of utilizing the 
multiplicity of signals.  The WSSE is used as a statistic for deciding if an incorrect cycle 
selection exists.  If the statistic is above a specified threshold, then the receiver assumes 
that there is a fault on at least one cycle.  Otherwise it assumes that there are no faults - 
all cycles are correct.  Estimates of the distribution of the statistic for the no fault and 
faulted cases are used to determine the confidence of the calculation.  Table 2 shows the 
two different methodologies and when the conditions under which they are employed.  



The next section discussed the demonstration of integrity for the first method.  The 
integrity demonstration for the WSSE method is examined in Section 4.0. 
 
Conditions Methodology 
3 stations or “trusted triad” Product of individual cycle probabilities  

PWC = (1-Π(1-PIC)) 
> 3 stations Use redundant information to bound PWC 

Current method employs WSSE statistic 
Table 2.  Methodology for Determining Cycle Identification Confidence 

 

2.2 Integrity of Three Station Methodology 
 
The integrity of cycle confidence when using only three stations depends solely on the 
probability of being on an incorrect cycle (PIC) as seen from Table 2.  The equation for 
determining PIC is given in Equation (1).  The calculation depends on the variance of the 
ECD due to noise.  The general formula for the variance is seen in Equation (2) and can 
be derived either theoretically [6] or empirically [3].  The results from the cited papers 
are consistent with only the value of C varying (depending on receiver performance)1.  
Given the ECD bias, the probability is solely dependent on SNR.  The equation should, 
from both theoretical and empirical analysis, well approximate the true PIC.  The 
methodology used for three stations should have integrity provided the value of C is well 
chosen. 
 

( ) ( )-5 sec, , -5 sec, - ,  ECD ECD
IC bias noise bias noisep normcdf ECD normcdf ECDμ σ μ σ= + (1) 

*noise

ECD C s
N SNR

σ μ=    (2) 

 

3.0 Using the WSSE to Determine Cycle Confidence 
 
The WSSE derived cycle confidence algorithm is more complicated than the previous 
method.  As such, to understand its performance and assess its integrity, the section 
covers how the WSSE is calculated and used to determine cycle confidence. 

3.1 Calculating the WSSE 
 
The WSSE statistic is the combination of the square of the residual errors of each Loran 
pseudorange measurement weighted by a weighting matrix, W.  This is seen in Equation 
(3) where ε̂  is the estimated residual error calculated from the difference of the 

                                                 
1 Boyce derived a value of roughly C = 21 μsec for the theoretical best performance while Peterson 
estimates that C = 29 μsec is currently achievable.  C = 42 μsec is the value derived by Peterson using the 
Austron 5000 receiver 



pseudorange and the estimated position solution using those pseudoranges.  The WSSE is 
related to the true residual error ε by the matrix P which depends on a weighting matrix, 
W, and the geometry matrix, G2. This is seen in Equation (4).  It should be noted that the 
weighting matrix for Equations (3) and (4) do not have to be the same.  Typically, the 
weighting matrices used are the same.  The equations for the full calculation of the WSSE 
are given in other papers [7].   The WSSE is used as its distribution is different if we have 
a faulted (undetected missed cycle) condition versus the no fault (all cycles correct) 
condition.  More significantly, if certain conditions are met, the distributions of the 
faulted and no fault WSSE is mathematically tractable. 
 

( )ˆ ˆT TWSSE W W I Pε ε ε ε= = −   (3) 

( ) 1T TP G G WG G W
−

= (4) 

3.2 Hypothesis Testing 
 
While the WSSE is used as a statistic for deciding if there exists an incorrect cycle 
selection, estimates of its distribution is used to determine the confidence of the decision.  
This is because the distribution of the WSSE depends on whether there is an incorrect 
cycle determination and on which signal(s) that incorrect cycle determination exists.  The 
determination of cycle confidence is illustrated in Figure 2 where the probability density 
function (pdf) of the no fault or H0 (left distribution) and a given faulted or H1 
distribution (right distribution) is shown.  The process starts by setting a threshold to 
decide if an incorrect cycle selection exists.  The threshold is set by the acceptable 
probability of false alarm (PFA).  The probability depends solely on the no fault 
distribution and is the integral of the value of the no fault pdf above the threshold.  This is 
the area in yellow in the Figure 2.  If the WSSE is less than the threshold, the user will 
assume that all cycles are correct.  Otherwise, it will be assumed that there is a cycle 
error.  However, it is possible that a faulted condition can yield a WSSE value that is 
below the threshold.  The area in red is the integral of the faulted pdf for values below the 
threshold.  It is the conditional probability of missed detection (PMD) given that this 
particular faulted condition exists.  The result applies to both single and multiple faults 
conditions.  The sum of all such probability weighted by the probability of the faulted 
condition, PIC, yields the overall probability of having an undetected wrong cycle, PWC.  
Equation (5) shows the calculation with the first term representing the contribution from 
all single fault conditions, the second term representing the contribution from all two 
fault conditions and the third term representing the contribution from all three fault 
conditions.  The probability of a faulted condition generally decreases as the number of 
faults increase and hence it is usually not necessary to calculate beyond two fault 
conditions to test for 7x10-8 integrity. 
 

i i ij i jki iWC MD IC MD IC IC MD IC ICj ICj kP P P P P P P P P P= + + +∑ ∑ ∑ …  (5) 
 

                                                 
2 G is a N x 3 matrix, where N is the number of transmitters used in the position solution.  Each row 
consists of the [cos(Az) sin(Az) 1] where Az is the azimuth from the transmitter to the user 



 
Figure 2. No Fault (Left) and Faulted (Right) Distribution and the calculation of probability of false 
alarm (PFA) and missed detection (PMD) 

 
While Equation (5) illustrates how to determine our cycle confidence, as expressed by 
PWC, we still need to know how to calculate the terms in the equation.  PIC can be 
estimated from parameters, such as signal to noise ratio (SNR) and ECD bias, available to 
the receiver (see Equation (1)).   The calculation of PMD requires knowledge of the 
distribution of the WSSE statistic for the no faulted and faulted cases.     
 

 
Figure 3. PDF of No Fault (Right) and Faulted (Left) Distribution for Determining PMD 

 
 



3.3 Central and Noncentral χ2 Distribution 
 
Knowing the no fault (H0) and faulted (H1) distributions allows for the determination of 
the threshold for a specified PFA and for the calculation of PMD.  The calculation is only 
tractable if the distribution can be described mathematically.  A common description for 
the distribution is the χ2 distribution and under certain conditions, the WSSE will follow 
this distribution. 
 
The χ2 distribution is formed from the sum of independent identically distributed (iid) 
normal random variables (rv) with variance of one.  If the random variables are zero 
mean, the resulting distribution is central χ2 otherwise the distribution is noncentral χ2.  
All χ2 distributions are characterized by the degree of freedom which represents the 
number of iid distributions used to form the sum.  Because of the nonzero, noncentral χ2 
are characterized by an additional parameter known as the noncentrality parameter (ncp).  
Figure 4 presents a flowchart on how central and noncentral χ2distributions are formed. 
 

 
Figure 4.  Central and Noncentral χ2 Distribution 

 
For WSSE statistic used in cycle confidence to be χ2, two conditions must hold.  First, 
the true residual errors must be normally distributed.  Second, the weighting matrix (W) 
used must be the inverse of the error covariance matrix (R) where R depends on the 
random components of the residual errors.  The proof is given in another paper [7]. 
 

3.4 Weighting Matrix 
 
As mentioned in the previous section, the weighting used for the WSSE determines the 
distribution of the statistic.  In this paper, we examine two different weightings.  One is 



based on random errors only (denote by σ weighting) and one is based on random plus 
bias errors (denote by σ+b weighting).  Random errors on Loran result from transmitter 
jitter and noise while bias errors result from propagation delays such as additional 
secondary factor (ASF) and temporal phase variations. The basic definition of the 
weighting matrix is given in Equation (6)  
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For the σ weighting, the terms of the matrix is given by  

,

2
random iiis σ=  and 0ijs = where 

, ,

2 2
, noise i tx irandom iσ σ σ= +   and   

_ , _ , ,i cor tempASF i uncor tempASF i spatialASF ib b b b= + + .   
The residual error, given no cycle errors is expected to be distributed as 

( ),,i i random iN bε σ∼ . 
 
For the σ+b weighting, the terms of the matrix is given by 
 

,

2 2 2 2
_ , _ , ,random iii cor tempASF i uncor tempASF i spatialASF is b b bσ= + + +  and _ , _ ,*ij cor tempASF i cor tempASF js b b= .   

The distribution of the residual errors, given no cycle errors, is modeled as 

( )0,i iiN sε ∼ .  It turns out that the model is not accurate as the σ+b weighting does not 

result in a distribution that is well approximated by χ2.  Unfortunately, the true 
distribution is not mathematically tractable. 
 
The σ weighting results in distributions that are more mathematically tractable and hence 
easier to demonstrate integrity.  However it comes at the cost of receiver complexity.  
The σ+b weighting is simpler to implement but is more difficult to demonstrate integrity.  
It was the weighting initially used for the 2004 evaluation [2].  Details of the advantages 
and disadvantages of these weightings are given by [4]. 
 

4.0 Integrity 
 
Integrity must be demonstrated for the cycle confidence algorithm if Loran is to be 
certified for aviation.  For cycle confidence to have integrity means that the calculated or 
estimated PWC is larger than the true PWC.  A sufficient condition for integrity is to 
demonstrate that the individual components of PWC, PMD, are overbounded by the 
estimated PMD.   

4.1 Demonstrating Integrity 
 



The methodology used for demonstrating that the cycle selection has integrity is to show 
that the calculated PMD is larger than the true PMD for each possible missed cycle 
situation.  As the true distributions are not known, bounding distributions have to be 
used.  To get this conservative estimate of PMD, an overbound concept similar to that 
presented in [8] is useful.  For integrity, it is only necessary to overbound the lower (left) 
tail of H1 distribution to get a conservative estimate for PMD.  If the lower tail of the 
faulted distribution is overbounded, the estimated PMD will be greater than the true PMD.  
This conservatism helps insure that the integrity requirement is met. The estimated H1 
distribution only needs to overbound the true distribution up to a cumulative distribution 
function (cdf) of 7x10-8 divided by the probability of the fault occurring.  This translates 
to a contribution to PWC of 7x10-8.  Since any probability of undetected wrong cycle (PWC) 
greater than 7x10-8 will be regarded as unacceptable, regardless of how much it exceeds 
that level, the overbounding of these higher probabilities is unnecessary.  This because 
any contribution that exceeds 7x10-8 that does not affect the cycle decision. 
 
Overbounding the upper (right) tail of the no fault distribution is useful as it results in a 
higher threshold than the one that would be derived from the true no fault distribution.  
The significance of this is that the higher threshold results a true PFA < PFA calculated.   
 
Hence, it is desirable to overbound both the upper (right) tail and lower (left) tail of the 
no fault and faulted distribution, respectively.  This is seen in Figure 5.  This provides 
both availability at or higher than specified by the PFA and integrity to the estimate of 
cycle confidence. 
 

 
Figure 5. Overbounding to Achieve Conservative Estimate of False Alarm & Missed Detection 



4.2 Achieving Bounds on the Distribution 
 
The question that needs to be answered is “how can the bounds on the distribution be 
determined?”  Generally, the receiver should have a good estimate of random errors since 
these depend on parameters that can be measured (i.e. SNR) or known in advance.  
However, the biases are not well known.  Instead, the receiver will have bounds on the 
value of the biases.  These may be used to create bounding χ2 distributions. 
 
With good estimates of the random errors and bounds on the bias values, the no fault 
distribution can be bounded at the desired false alarm level.  The demonstration of this 
will be left for a later paper.  The result is provable for all cases of σ weighting.  The 
basic idea is that the maximum (over all possible permutations of signs for the bias 
bounds) estimated noncentrality parameter (ncp) generated using the bias bounds will be 
larger than the true ncp.  Having the estimated ncp larger than the true ncp results in 
overbounding the true no fault distribution for the σ case.  A similar result is provable for 
the σ+b weighting case.  While true WSSE is not χ2 distributed, it can be shown that the 
distribution, for CONUS geometries, is overbounded by the central χ2 at the desired false 
alarm levels.  Bounding the no fault distribution allows for conservative estimate of the 
probability of false alarm resulting in PFA,true < PFA,est.   
   
For integrity, the critical factor is to bound the faulted distribution.  This can be achieved 
in a couple of ways.  First, it is possible to calculate a value for the H1 ncp that is lower 
than the true H1 purely by examining all variations of signs for the bias bounds.  The 
result is demonstrable for all cases of σ weighting and is presented in another paper.  A 
second method is to conduct a multi-dimensional search over the space of all possible 
values of the bias for the lowest ncp.  The resulting ncp is less conservative than the first 
method and should yield better availability.  However, it is computationally more costly 
than the first method.  Since approximately 60 to 100 fault cases need to be examined for 
cycle confidence, the computational burden may be too much.  Unfortunately, we 
currently cannot show that it is possible to bound the faulted distribution generated by the 
σ+b weighting at the levels desired (10-7). 
 

4.3 Comparing Bounding and True Distributions 
 
Simulations can be used to demonstrate and visualize the conclusions of the bounding 
argument.  A geometry with N stations at varying distances and azimuths was chosen.  
The true biases are known and used to calculate the true distributions.  The estimated 
distributions are generated without any knowledge of the true bias.  They are generated 
only using bias bounds.   
 
Figure 6 shows the true and estimated no fault distributions for both weightings.  The 
plots show the estimated distribution calculated using the median ncp.  As mentioned 
previously, for the σ weighting, it can be shown that the worst case (maximum) ncp for 
the no fault distribution is guaranteed to overbound the true no fault distribution.  In this 



case, as in most cases, the estimated no fault distribution using the median ncp 
overbounds the true no fault distribution.  Also note that the central χ2 bounds the true 
σ+b weighting. 
 

 
Figure 6.  Comparison of the PDF of the No Fault True & Estimated WSSE Distribution (Estimated 
distrib. chooses median ncp combination of bias), NC = Noncentral 

 
Figure 7. Comparison of the PDF of the Faulted True & Estimated WSSE Distribution (Estimated 
distributions use ncp from no fault case), NC = Noncentral 

Figure 7 shows the true and estimated fault distributions for both weightings.  Again, the 
plots show the estimated distributions calculated using the median ncp.  This plot is a bit 
different than Figure 6 as it represents the average distribution from all faulted cases 
weighted by fault probability of each case.  It can be seen that even with the use of a 
median ncp, the σ weighting, the lower tail is overbounded in this case.  In the case of the 
σ+b weighting, it is difficult to tell whether the tail is overbounded.  However, since the 
faulted distribution is reasonably close to that of the no fault distribution, the resulting 
estimated PWC will indicate inadequate cycle confidence.  
 



5.0 Availability 
 
Another important performance consideration is the availability achievable using each 
method.  A method may provide integrity but be so conservative as to result in low 
availability.  As a result, the method, while safe, is not operationally useful.  In this 
section, we examine the performance of each method for aviation approach (RNP 0.3) 
and enroute (RNP 1.0).  The specifics of each operational mode and the tool used to 
conduct the availability analysis are discussed more in other papers [4][9]. 
 
Cycle confidence is necessary for both operations.  The same high level of cycle 
confidence, PWC < 7x10-8, is required for both operations to have Loran availability.  The 
difference between the two operations lies in the quality of information available to the 
receiver.  Under the current Loran architecture for aviation, an enroute user will generally 
have larger errors in estimating parameters such as ASF and ECD.  Since both these 
parameters affect cycle selection, cycle availability will not necessarily be the same for 
RNP 0.3 and RNP 1.0 even though the fundamental algorithm is the same. 

5.1 RNP 0.3 
 
Figure 8 shows the RNP 0.3 availability for Loran when σ+b (left) and σ (right) 
weighting is used for the cycle confidence algorithm.  The availability is calculated under 
the worst case noise condition.  The availability is not at the desired level though it is 
generally reasonable (above 90%).   The two availability plots look comparable.  Under 
RNP 0.3 conditions, the bias values, while significant, does not dominate the weighting 
distribution.  The result is that the WSSE statistic and H0 distribution for the σ+b 
weighting will be reasonably similar to that from the σ weighting in many instances 
provided that the biases are not large.  One caveat about the plot is that the noncentrality 
parameters for no fault and faulted WSSE distribution used for the σ case are not the 
worst case but a nominal case.  Currently, the worst case ncp calculation has not been 
implemented into the coverage model.  If the worst case were used, the availability 
should be worse.  
 

 
Figure 8.  RNP 0.3 Availability at Worst Case Noise Conditions for σ+b (L) and σ (R) Weighting 



 
The 2004 evaluation report used what was considered to be a conservative model for 
noise processing.  Since that report, further study of noise has identified potential 
improvements to our noise model that better reflect the nature of atmospheric noise.  
These are described in [10].  The conclusion of [10] is that higher noise levels are 
positively correlated to higher levels of impulsive noise.  Higher impulsivity results in 
larger noise processing gain.  This is because noise suppression through processing is 
positively correlated with impulsivity.  As a result, more processing gain is generally 
available than assumed in the 2004 evaluation report.  Effectively, the noise is reduced.  
Figure 9 shows the RNP 0.3 availability calculation as in Figure 8 with the exception that 
this revised noise processing model is used.  Given the model, the availability throughout 
most of CONUS for both weightings is at the desired level.  Again, there is little 
difference between the two weightings.  While the effective noise has generally 
decreased (in the worst locations), it is still significant and dominates the weighting 
matrix.  
 

 
Figure 9.  RNP 0.3 Availability at Worst Case Noise Conditions for σ+b (L) and σ (R) Weighting 
with Revised Noise Model 

5.2 RNP 1.0 
 
Figure 8 shows the RNP 1.0 availability for Loran when σ+b (left) and σ (right) 
weighting is used for the cycle confidence algorithm.  Again, the availability is calculated 
under the worst case noise condition.  The availability using σ+b weighting is almost non 
existent while the availability using σ weighting is similar to its RNP 0.3 availability.  
The reason for this is that under RNP 1.0, it was assumed that residual phase errors such 
as spatial ASF can be much larger than that encountered under RNP 0.3 (1000 m vice 
100 m for spatial ASF).  This results in the bias values being the dominant term in the 
σ+b weighting matrix.  Since the weighting matrix is inversely related to the magnitude 
of the bias values, the resulting true WSSE is relatively small.  As such, the central χ2 
distribution used to overbound the σ+b no fault distribution greatly overbounds it, 
resulting in the poor availability.  This is a case of overconservatism.  The σ weighting, 



on the other hand, has an overbound model that is closer to the true distribution.  The 
closer approximation of model to truth is part of the design of the σ weighting algorithm. 
 

 
Figure 10. RNP 1.0 Availability at Worst Case Noise Conditions for σ+b (L) and σ (R) Weighting 

 
Figure 8 shows the RNP 1.0 availability for Loran for both weightings when the revised 
noise model is used.  Again, the σ+b weighting results in almost zero availability while 
using σ weighting achieves the desired availability throughout CONUS. The availability 
using σ weighting is similar to its RNP 0.3 availability under the refined noise processing 
model.   
 

 
Figure 11. RNP 1.0 Availability at Worst Case Noise Conditions for σ+b (L) and σ (R) Weighting 
with Revised Noise Model 

 

6.0 Implementation 
 
Another important consideration is receiver implementation.  Having a mathematically 
expressible distribution helps enable the implementation of the cycle integrity algorithm.  



However, it does not ensure that the algorithm can reside reasonably within the receiver.  
This section examines the implementation of the algorithm and the potential hardware 
requirements of implementation. 
 
The determination of PWC and cycle confidence is a five step process as seen in Figure 
12.  First, the receiver must calculate the parameters defining the no fault and faulted 
distributions.  This is a reasonably non intensive process as only the degree of freedom 
(dof), which is just the number of stations minus three, and the noncentrality parameter 
need be calculated.  Second, the receiver must calculate the threshold based on the no 
fault distribution.  If no fault distribution is bounded by a central χ2 as is the case for the 
σ+b weighting, the threshold depends solely on the dof and can be stored in a small look 
up table (~10 elements).  If a noncentral χ2 distribution is used, calculation of the 
threshold depends on both the ncp and dof.  If a look up table is used, approximately 100 
to 10000 values need to be stored.  These values are the thresholds resulting from 
different combinations of dof and ncp.  Step three examines the threshold with the 
calculated WSSE value.  If the WSSE is above the threshold, it is likely that there is a 
fault and the condition is flagged.  If the WSSE is below the threshold, it is likely that 
there is no fault, though we do not know the confidence of this determination.  The next 
step determines the confidence and the last step checks to see if the confidence is 
adequate. 
 
Step four is to calculate the probability of incorrect cycle (PIC) for each station and then 
probability of missed detection (PMD) for every probable faulted (missed cycle) case.  
Calculating PMD requires the determination of the cumulative density function (cdf) of 
noncentral χ2 distributions at the threshold value.  If a look up table is used, this 
calculation will also require approximately 200 or more values need to be stored per 
threshold value.  This result implies that for the σ+b weighting, the number of values that 
need to be stored is of order 103 to 104.  For the σ weighting, that number becomes 
roughly order 105 to 107.  Hence, σ weighting receiver requires more memory and 
computational resources.  The result of the calculations is used to compute the overall 
probability of having an undetected wrong cycle, PWC.  The final step checks if there is 
adequate confidence in the cycle selection (PWC < 7x10-8). 
 



 
Figure 12.  Steps to Determining Cycle Confidence and Decide if Cycle Selection is Valid 

 

7.0 Conclusion 
 
The primary purpose of the assessment of the Loran cycle confidence algorithm was to 
determine how to provide integrity to the algorithm while achieving acceptable levels 
availability.  The assessment focused on the choice of weighting matrix used and the 
resulting impact on the algorithm.  Two weighting matrices were examined: one based on 
random plus bias errors (σ+b) and one based on random errors (σ).  From an integrity 
standpoint, the σ weighting seems to be better as the integrity of the algorithm using the 
weighting is more provable.  From an availability standpoint, σ+b work reasonably for 
RNP 0.3 but not for RNP 1.0.  Availability using σ weighting is reasonable for both RNP 
0.3 and RNP 1.0. Using a revised noise processing model, σ achieves target levels of 
availability in both procedures while σ+b still is not usable for RNP 1.0.  From an 
implementation standpoint, σ+b is more easily implemented as it requires less processing 
and storage.  However, σ weighting can be implemented in most modern receiver and 
given that it has better integrity and availability characteristics, it should be the weighting 
used for aviation Loran receivers. 
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